Wednesday, November 23, 2016

Tablas periodicas

Periodic Table formulations from the years 2000 - 2009, by date:

2000     Chemical Elements Pyramidal Diagram
2000     Elements Known in the Year 2000
2001     Mayan Periodic Table
2001     Vertical Periodic Table
2001     Muradjan's Universal Periodic System
2001     ElemenTouch Periodic Table
2002     System Québécium Periodic Table
2002     Tetrahedral Twist: Chemistry Puzzle and Teaching Device
2003     Philip Stewart's Chemical Galaxy II
2003     Cylinder With Bulges Periodic Table
2003     Elephant Periodic Table
2003     Elements by Orbital
2003     Electronegativity Periodic Table
2003     Proper Place for Hydrogen
2003     Ukrainian Periodic Table
2003     Bernard's Periodic Table of The Elements in Three Dimensional Form
2003     Bird of Prey Periodic Table
2003     Eight-Group Periodic Table
2004     Rafael Poza Periodic Table
2004     Monument to the Periodic Table
2004     Piano Periodic Table
2005     Laing's Revised Periodic Table with the Lanthanides Repositioned
2005     Cyclical Continuum of Elemental Properties
2005     Atom Flowers
2005     Elements
2005     Pyramid Format Periodic Table
2005     Górski's Atomic Core Based Periodic System
2006     Where Should Hydrogen Go?
2006     Eric Scerri's Periodic Table
2006     ADOMAH Periodic Table by Valery Tsimmerman
2006     Wikipedia Alternative Periodic Table
2006     Henry Bent's Exploration into Janet's Left-Step Formulation
2006     Reaction Chemists' Periodic Table
2006     Schemata of the Elements
2006     Various Periodic Tables
2006     Bent's PlN and Ple (Front Step) Periodic Tables
2006     Harmonic Circle & Spiral of the Chemical Elements
2007     Rota Periodic Table
2007     Jelliss' Periodic Table
2007     Wikipedia Circular Periodic Table of The Elements
2007     Gyroscopic Periodic Table
2007     Second Life Periodic Table
2007     University of Jaén (Spain) Wall Mural Periodic Table
2008     Rafael Poza's Elements and the Magnetosphere
2008     ADOMAH Tetrahedron Periodic Table
2008     Bydgoszcz's Periodic Table
2008     Tomás A. Carroll's Spherical & Russian Doll Formulations
2008     Stack of Elements Periodic Table
2008     Angular Form of the Periodic Table
2008     Jan Scholten's Periodic table (Spiral Format)
2008     Spiral Periodic Table
2008     Trinity College Dublin Periodic Table
2008     Bernard Schaeffer's Quantum Mechanics Consistent Periodic Table
2008     Nuevo Modelo Mathemático Tabla Periódica
2008     Mathematical Formulas Describing the Sequences of the Periodic Table
2008     Wheel Structure Periodic Table
2008     Teluric Helix from Gutierrez Samanez
2009     Russian Periodic Table
2009     Silberstein Periodic Table
2009     Janet Based Periodic Table Layout by Ivan Antonowitz
2009     Structured by Valence Periodic Chart
2009     Steve Jensen's In-Finite Form
2009     Graphic Representations of the Periodic System
2009     Nasco’s Periodic Table Toss-Up Ball
2009     Acrylic on Canvas Periodic Table
2009     Russian MedFlower Periodic Table

Chemical Elements Pyramidal Diagram
A Chemical Elements Pyramidal Diagram by Thomas Zerkov.
"The present work introduces a new arrangement of the chemical elements. Unlike the most popular existing arrangements, which are two-dimensional, this new arrangement is three-dimensional. It organizes the elements in a pyramidal structure of four levels, giving a clear spatial expression of different relations between the chemical elements. Since the three-dimensional structures are harder to perceive than the two-dimensional ones, the present work also suggests a two-dimensional table representation of the three-dimensional pyramidal diagram, where the four levels are all placed in a single plane, instead of one above the other."

2000 Elements Known in the Year 2000
Elements known in the year 2000, taken from this Wikipedia page:

2001 The Mayan Periodic Table
The Mayan Periodic Table of Elements, named for its similarity to the ancient Mesoamerican calendar, is based on electron shells. The shells are shown as concentric circles. Each row in the tabular form is shown as a ring.

Read more and buy the poster and T-Shirts at

2001 Vertical Periodic Table
A vertical periodic table from

2001 Muradjan's Universal Periodic System
Muradjan's Universal Periodic System is a variation of the Janet formulation, however, it is worth visiting the web page and scrolling down as there is much interesting material:

2001 ElemenTouch Periodic Table
Yoshiteru MAENO writes:
"I am a Physics Prof. at Kyoto University, Japan. My field of study is experimental superconductivity. I recently found the work by Schaltenbrand in 1920 on your website. One might say that Elementouch is a re-invention of Schaltenbrand's, but by arranging the element names helically on three cylinders, its usefulness has been improved":

2002 System Québécium Periodic Table
Using Google Translate of this page:
"To establish a new classification system components, Pierre Demers was assumed that the electronic structure of the atom contains one of my all others according to the equation Z = 117 to Z = 1. It is taking my electrons and removing them from my material that can reproduce all the elements and thus repeat the structure of your table. That is why this new organization is called the System Québécium":

2002 Tetrahedral Twist: Chemistry Puzzle and Teaching Device
A twisting three dimensional puzzle apparatus for the study of chemistry and its history and based upon the Zmaczynski equilateral triangular model of the periodic table of the chemical elements. Each face of the pyramid has a series of equilateral shaped portions bearing portions of the periodic table of elements. The different segments can be rotated around in order to scramble the puzzle. Such portions can be constructed using same or similar technology that was used to design the Meffert PYRAMINX PUZZLE that is similar to the RUBIK'S CUBE design.
From a US Patent.
Tetrahedral Twist: Chemistry Puzzle and Teaching Device

2003 Philip Stewart's Chemical Galaxy II
Philip Stewart's Chemical Galaxy II periodic table formulation, from here:

Click here for a larger version.

A simplified 'chemical galaxy':

2003 John Denker's Cylinder With Bulges
John Denker fully discusses the logic behind a three dimensional periodic table that he describes as a "cylinder with bulges", here:

Elephant Periodic Table
The periodic table does not map to an elephant very well:

Click on the poster below to go to a large version:

2003 Elements by Orbital
From elsewhere in Mark Leach's Chemogenesis webbook:
Madelung's Rule tells us that the orbitals fill in the order n + l (lowest first). This gives the sequence:

Electronic structure can be illustrated adding electrons to boxes (to represent orbitals). This representation shows the Pauli exclusion principle, the aufbau principle and Hund's rule in action.

There are some subtle effects with the d block elements chromium, Cr, and copper, Cu. Hund's rule of maximum multiplicity lowers the energy of the 3d orbital below that of the the 4s orbital, due to the stabilisation achieved with a complete and spherically symmetric set of five 3d orbitals containing five or ten electrons. Thus,
  • Chromium has the formulation: [Ar] 3d5 4s1 and not: [Ar] 3d4 4s2
  • Copper has the formulation: [Ar] 3d10 4s1 and not: [Ar] 3d9 4s2

2003 Electronegativity Periodic Table
"This image distorts the conventional periodic table of the elements so that the greater the electronegativity of an atom, the higher its position in the table", here:

2003 Proper Place for Hydrogen in the Periodic Table
The Proper Place for Hydrogen in the Periodic Table, a paper by Marshall W. Cronyn of the Department of Chemistry, Reed College, Portlland.
Cronin writes in the Journal of Chemical Education Vol. 80, 94 -951: "After more than 130 years of construction, the place of hydrogen in the periodic table is still the subject of doubt, con- fusion, and inadequate explanation that appears to be little more than numerology..." and comes to the conclusion that hydrogen should be positioned above carbon:

2003 Ukrainian Periodic Table
A Periodic Table from the Ukraine:

2003 Bernard's Periodic Table of The Elements in Three Dimensional Form
Hinsdale Bernard's Periodic Table of The Elements in Three Dimensional Form, US Patent 7,297,000:

Roy Alexender, of the Desk Topper arrangement, has photoshopped a blurry photograph sent by Bernard along with a product mockup:

2003 Bird of Prey Periodic Table
From Edmond (Ned) Maurice Peyroux:
"I am a self-taught, underground cartoonist - around the end of 2005 I began studying ether physics, & mid 2006 orgone biophysics. End of 2008 I was going through old note & sketch books while compiling pieces for a poetry book, & came across a sketch I did in 2003 of the first 20 elements of the periodic table in a spiral. I had just begun studying the ether vortex model of the atom & thought a vortex model of the periodicity might be a fun experiment so I played with it more. I didn't remember what inspired the original concept sketch 5 years later, but my guess was I had stayed up too late watching public television again. It probably had to do with some 4-Dimension ring concepts I was playing with, but by 2008 I was thoroughly involved in 3-D biophysics & wasn't thinking back to earlier thought experiments I had done."
"The compositions are largely artistic, naturalistic, & most are like steps on a story board, showing transformation of the table, distorting from from rectangular to spiral, then splitting between metals & noble gases like the wings of a bird, flapping, then joining again to make the spiral (then the spiral inflates to make a flower, wilts into a spider's web) - there are many transitions I have in mind, but I my work is not limited to the periodic table.":

2003 Eight-Group Periodic Table
From Number Patterns in Nature by Jan C.A. Boeyens, Crystal Engineering 6 (2003) 167–185.
The Eight-Group Periodic Table of the 81 stable elements, in spiral form. Available sites on the prime-number cross, starting from zero, number 102.,
<Eight-Group Periodic Table>

2004 Rafael Poza Periodic Table (Click to Enlarge)

2004 Monument to the Periodic Table
Monument to the periodic table, in front of the Faculty of Chemical and Food Technology of the Slovak University of Technology in Bratislava, Slovakia. The monument honors Dmitri Mendeleev.


Piano Periodic Table

A Piano Periodic Table from Claude Bayeh:
Fictional Elements
Fictional Elements

2005 Laing's Revised Periodic Table with the Lanthanides Repositioned
Michael Laing's "Revised Periodic Table with the Lanthanides Repositioned", from Foundations of Chemistry 7:203-233.
  • The new system emphasizes oxidation states.
  • The elements Eu and Yb fall directly below Ba, indicating the common oxidation state of 2+.
  • Elements La, Gd, Lu fall in a column below Y, all having the dominant oxidation state 3+.
  • Ce and Tb fall between Zr and Hf in keeping with their 4+ oxidation state. Pm (Z=61) lies immediately below Tc (Z=43), both without stable naturally occurring isotopes.
  • The easily attained oxidation states of 2+ for Am and No, and 4+ for Bk are evident from the analogous positioning of the actinides.

Philip Stewart's modification of the Laing formulation:

Philip Stewart says (in a personal communication):
"It seems wrong to suggest an analogy between Pr to Sm and Dy to Tm with the V, Cr, Mn, Fe groups. I have pushed them to the right to suggest that those lanthanides are like the old group VIII (including the coinage metals); like them they cannot use all their outer electrons in bonding (with the exception of Ru viii and Os viii. I have treated the actinides differently to take account of Pa v and U vi. It's ability to lose the juxtaposition of Tc and Pm, but it is physical rather than chemical anyway."

2005 Cyclical Continuum of Elemental Properties by Robert R. Northup
The Cyclical Continuum of Elemental Properties Periodic Table by Robert R. Northup
"The Cyclical Continuum of Elemental Properties is a user-friendly teaching tool that is intended to accompany the Periodic Table of Elements. Hydrogen is shown at the center, atomic numbers and symbols form an unbroken spiral, and element groups 1 through 18 (noble gases, alkali metals, halogens, etc.) are displayed by colored arcs. Beginning chemistry students can visually see the continuity of atomic numbers in the Cyclical Continuum as a way to introduce and orient them to the Periodic Table. Advanced chemistry students can test their understanding of the Periodic Table's organization by applying that knowledge to interpretation of the Cyclical Continuum."

Read more and buy the poster at the Cyclical Continuum web site.

2005 AtomFlowers by Boy Boer
A periodic table that gives a representation of the electron orbitals that look like flowers:

2005 Painting of The Elements
From Gabrielle David's website, here, a painting called Elements, inspired by Melinda Green's Periodic Fractal formulation of 1995:
  • The tiniest ball in the center is hydrogen, the next helium, lithium, etc.
  • Colors indicate the chemical group.

2005 Pyramid Format Periodic Table
From Wikipedia, this Pyramid Format Periodic Table is Based on a graphic from Scholten J."Secret Lanthanides", 2005, ISBN 90-74817-16-5;

2005 Górski's Atomic Core Based Periodic System
From Go?rski A., Pol. J. Chem., 79, 1435 (2005), an atomic core based periodic system of the chemical elements. In this version of the Periodic Table, He is placed close to H and simultaneously above Be (and not above Ne):
Górski's Atomic Core Based Periodic System

2006 Where Should Hydrogen Go?
There are four possible positions for hydrogen:
  • A Group 1 element, above Li, because it forms H+ ions.
  • A Group 17 element, above F, because it forms H- ions.
  • Above and between boron and carbon because it is of intermediate electronegativity.
  • In the top middle, because nowhere else is ideal.

2006 Eric Scerri's Triad Periodic Table
Eric Scerri says, "I have recently developed a new periodic table with some very nice features. I am now shifting my allegiance from the left-step table to this one."
  • New design based on the fundamental nature of triads, and on atomic number triads in particular.
  • H,F,Cl is a new perfect atomic number triad not featured in the usual medium-long form table. There are also many chemical arguments for placing H among the halogens rather than the alkalis.
  • Note the regularity regarding period lengths. 8, 8, 18, 18, 32, 32 ...
  • All period lengths repeat without fail, unlike in the medium-long form.
  • Also note the bi-lateral symmetry assuming the rare earths are given as a footnote.
Read the paper on the philosophy of science web site.

Eric Scerri, The Periodic Table: Its Story and Its Significance, Oxford University Press, 2006. Read an interview with the author, here, and a review of the book here.

2006 ADOMAH Periodic Table by Valery Tsimmerman
The ADOMAH periodic table is based on the Janet or left-step periodic table. It consists of four blocks (s, p, d & f) corresponding to quantum numbers l = 0,1,2,3. Blocks are separated, shifted and reconnected with each other via diagonal lines. This arrangement creates "layers" or "strata" that retain continuity in respect to atomic number Z, in addition to usual columns and rows. Therefore, numbers shown on the right hand side of the table may represent either quantum numbers n (electronic shells) if horizontal rows are followed, or n + l if "layers" or "strata" are followed.
This feature assists in creation of electronic configurations of the elements. Elements H and He are placed in two positions that reflect their dual nature and give proper consideration to atomic structure and chemical properties of those two elements. This feature also preserves triads He, Ne, Ar and H, F, Cl. Also, the elements are placed in rectangular "boxes", so any two of such "boxes" make up a square thus symbolising electron pairs. This also cuts table length in half. Unlike the Janet table, this table is assembled from bottom up in direction of increase of quantum number n, as well as atomic weight and energy. The ADOMAH table has symmetry and, assuming total number of elements 120, can be divided in four parts of 30 elements with center point located among precious metals.


2006 The Wikipedia Alternative Periodic Table
On the Wikipedia there is another circular form of periodic table:

2006 Henry Bent's Exploration into Janet's Left-Step Formulation
Henry Ben't detailed exploration into the Left-Step formulation of the periodic table is available as a book:

2006 Reaction Chemists' Periodic Table
OK, so which Is The Best formulation of The Periodic Table?
Personally as a reaction chemist, my preferred periodic table is the 'long' form shown below, with hydrogen above and between boron and carbon, although clearly other scientists have other ideas.
All periodic tables show the increase in mass and atomic number, Z, but only the long form unambiguously shows the general top-right-to-bottom-left trends in electronegativity, atomic radius, metallic properties and first ionisation energy.

Electronegativity is absolutely crucial to the understanding of structure, bonding, material type (van Arkel-Ketelaar triangle and Laing tetrahedron) and chemical reactivity, and it underpins much of the chemogenesis analysis.

2006 Schemata of the Elements "The conventional periodic table reflects what is called the aufbau design, which represents a progression of numbers; in this case, that of the atomic number of the elements. The table, however, contradicts the aufbau concept in reality, because there are large gaps within among the primary (representative) elements, as well as in relation to the tertiary elements (transition and inner transition elements). The latter case, the Lanthanoids and the Actinoids, lie completely outside of the main body of the periodic table, thereby effectively breaking down the aufbau design... more..." from here by Charles William Johnson:
The Neutronic Schemata: Specialized Schemata of the Elements

2006 Various Periodic Tables
As discussed on this page of the Chemogenesis webbook, the periodic table is ambiguous as to what it is showing.
Does the PT show the element as the abstract 'basic substance', or gas phase atoms or the material substance?

2006 Bent's PlN and Ple (Front Step) Periodic Tables
In his book, New Ideas in Chemistry from Fresh Energy for the Periodic Law, here, Henry Bent introduces the PlN and Ple (Front Step) Periodic Tables, Figs 50 & 52:

2006 Harmonic Circle & Spiral of the Chemical Elements
Brian David Andersen of Tri-Vortex Technology (Researcher/Inventor/Scientist), Subtle Energy Products

The Rota Periodic Table
A new periodic table formulation by James Rota here.

2007 Jelliss' Periodic Table
Jelliss' Periodic Table, more information here:

2007 Wikipedia Circular Periodic Table of The Elements
Wikipedia circular periodic table of the elements here:

2007 Gyroscopic Periodic Table
From the Garuda Biodynamics web site: "The Gyroscopic Periodic Table has been a natural progression developed from a study of Soil Science, Dr Steiner's Agriculture and Medical Courses, Astronomy and Astrology."

2007 Second Life Periodic Table
From the Useful Chemistry blog: "Further adding to the set of chemistry tools in Second Life, Hiro Sheridan has created a 3D periodic table with rotating atoms. Although not directly proportional, the relative sizes of the spheres are in the correct order. Clicking on them provides basic information about the corresponding element. The 3D periodic table is available on the Chemistry Corner on Drexel Island."

2007 University of Jaén (Spain) Wall Mural Periodic Table
From November of 2007 a large Periodic Table placed on the main facade of Sciences Building in the University of Jaén (Spain) welcome everybody.
The table was made in honor of Mendeleev on the 100 aniversary of his death and on the occasion of the Spanish Year of Science according to the concept and design of the Spanish Chemist Antonio Marchal Ingrain, who was inspired in a postage stamp launched that year in Spain.
The artistic mural is composed of 117 tiles of 20 x 30 cm, one for each of the elements known to date, reaching a final dimensions of 2.8 x 3.6 meters. Apart from the traditional information with which students are familiar, such as the atomic number, atomic mass and the chemical symbol of the element, each of the ceramics incorporate information concerning the meaning of its name in Latin or Greek, the year and the name of the person or group of people who discovered it or isolated.

2008 Rafael Poza's Elements and the Magnetosphere

2008 ADOMAH Tetrahedron
Valery Tsimmerman has developed various periodic table formulations, available at perfect perioidic

2008 Bydgoszcz's Periodic Table
Bydgoszcz's Periodic Table, web site:

2008 Tomás A. Carroll's Spherical & Russian Doll Formulations
Tomás A. Carroll has devised a spherical formulation of the Periodic Table, and from this a nested Russian Doll formulation.
Tomás writes: "I accept your veiled challenge that it is not possible to formulate a spherical periodic table and propose two solutions for your consideration. The EXCEL spreadsheet shows exactly how I transformed the quantum numbers from the standard 4D Cartesian coordinates to spherical coordinates in 3D, using two different centers. I included cylindrical coordinates too, just for fun."

2008 Periodic Stack of Particles
Quantum Vectors and Atomic Stack Symmetry© (This page only renders properly in Explorer.)
The Janet Periodic Table of Elements (1929) may be re-arranged as a series of square matrices. The matrices are of different sizes and each matrix organizes the atomic orbitals into square concentric rings. Each cell may be assigned an atomic number which also identifies a “most significant electron”. The matrices may be stacked vertically to form “The Periodic Stack of Elements” as shown below.
The sub-atomic particles may also be arranged as square matrices. These matrices may be stacked to form “The Periodic Stack of Particles”.
Please send your comments to:    Last Revision 21 April 2008. 

2008 Angular Form of the Periodic Table by Kamal Akhtar
"The complete periodic table is consists of two circles, principal circle and auxiliary circle. The principal circle is consist of seven tracks (periods) and eighteen sectors (groups). The auxiliary circle is consist of only two tracks, inner track and outer track. There is no division of sectors in auxiliary circle." Read more in a word.doc. View the full size PT.


2008 Jan Scholten's Periodic table (Spiral Format)
A spiral format periodic table by Jan Scholten:

2008 Spiral Periodic Table
A spiral periodic table available as a poster, binder, cup, T-shirt, etc. by Vectoria:

2008 Trinity College Dublin Periodic Table
A periodic table from the Trinity College Dublin physics dept. website:

2008 Bernard Schaeffer's Quantum Mechanics Consistent Periodic Table
My graphic representation of the orbitals needed for the periodic table is without brilliant colors, but much simpler. It shows the nodes of vibration of the spherical resonator (a spherical musical instrument) also called spherical harmonics appearing in the spherical solution of the Schrödinger equation. It may be noticed that the atom is also a spherical resonator, not of sound but of the de Broglie waves.
The spherical harmonics (feminine word in french!) have been discovered by Legendre two centuries ago, see my book. Only the plane nodes of vibration are shown. The nodes of the orbitals are a 3D equivalent of the Chladni figures (also discovered two centuries ago) on a vibrating plate: "Aufbau" with spherical harmonics.
The random electronic exceptions in the subshells don't appear. The spherical nodes of the orbitals are represented only for the s subshells. This is a much simpler representation than the usual 3D representations. It can be used to represent the entire periodic table as I have shown earlier. The elements are in regularly increasing atomic numbers.
Bernard Schaeffer's Quantum Mechanics Consistent periodic table from here:

2008 Nuevo Modelo Mathemático Tabla Periódica
Julio Antonio Gutiérrez Samanez presents his Periodic Table formulation ideas in a 2006 PDF paper (in Spanish):

And a YouTube video:

2008 Mathematical Formulas Describing the Sequences of the Periodic Table
Mathematical formulas describing all of the sequences of the chemical elements are derived from double tetrahedron face-centered cubic lattice model. More here.
J. Garai, Department of Earth Sciences, Florida International University. International Journal of Quantum Chemistry, Vol 108, 667–670 (2008):

2008 Wheel Structure Periodic Table
From the Science Photo Library, a computer illustration representing the periodic table of the elements as a wheel structure.
  • The radiating spokes are the groups and are colour coded.
  • The heights of the columns represent the elements' atomic numbers, being the numbers of protons in their nuclei. The elements in any one group share many chemical and physical properties.
  • At the wheel's centre is the first element, hydrogen, (H, white).
  • At the end of each spoke, the elements are unnamed, and only their atomic numbers are shown, from 110-120.
  • The transition elements (upper left, orange) and the Lanthanides and Actinides (upper right) are blocks of elements with predictably varying properties.

2008 Teluric Helix from Gutierrez Samanez
The Teluric Helix from Gutierrez Samanez is inspired by the telluric helix Chancortois (1864) with the difference that the sequence of the elements are rolled into a cone shape rather than a cylinder:

2009 Russian Periodic Table
A modern Russian periodic table using the Mendeleeve formulation:

An older version of the same formulation (date unknown, 1950s?), from here:

2009 Silberstein Periodic Table
The organization of the periodic table that follows is based on the principle that, as the
position of Lanthanum, Actinium, Lutetium, and Lawrencium is debated with regard to the
elements in Group III, all four of these elements can be placed in an “extended” Group III and
still have the correct arrangement on the periodic table. Although Scandium and Yttrium appear
to be separated from the rest of the transition metal elements, they in fact should be considered to
retain their original positioning as in a short-form table; that is, they are immediately to the right
of Calcium and Strontium and immediately to the left of Titanium and Zirconium. The curving of
the rare earth elements is merely a tool to denote the position of Lanthanum, Actinium, Lutetium,
and Lawrencium in Group 3, with the remainder of the rare earth elements placed outside of an
existing group, or rather creating their own group. View larger pdf file.

David Silberstein, August 2009

2009 Janet Based Periodic Table Layout by Ivan Antonowitz
"Every element has its own unique Periodic Table which is a mixture of two Ideal Forms. However, the main point at the moment is what level of complexity would be suitable? I am trying to get the most minimalistic presentation of the essential features. Explaining the logic governing the 'reversals' is quite tricky, if not controversial, and others may have more conventional rationales and so better fill in the details."
Ivan Antonowitz

2009 Periodic Chart Structured by Valence
A periodic chart structured by valence, developed by Steve Waterman:

2009 Steve Jensen's "In-Finite Form"
"I'm a figurative sculptor, living in Minneapolis MN. A few years ago, while looking at a two dimensional version of the periodic table, I too wondered if it would be possible to create a Periodic Table without any visual breaks in its numerical sequence. Although I had never seen anything other than the rectangular flat table, I thought I might be able to solve this spatial continuity problem three dimensionally. I also wanted to limit myself to using a 3-D "line" that had no sudden changes in direction. After coming up with what I thought was a new and unique sculptural resolution, I put the project aside. Only recently (after re-building my paper model out of a translucent material) did I do some research on the web, and immediately recognized the strong likeness between my version and the Alexander Arrangement. Even more surprising was my models' visual similarity to Crookes' figure eight design from some 111 years ago.
"Although there are obviously many inventive and well thought out responses to this design challenge, I believe that my solution is a unique one, and an improvement over some of the previous three dimensional forms. The "line" of my model allows for contiguous numerical placement of all the symbols (while maintaining group continuity along its vertical axis), even as the shape of its plan view makes visual reference to the well-known symbol for infinity. What's more, in my version, the Lanthanide & Actinide series do not occupy a separate field but are fully integrated into the continuous linear flow. This piece, which I've entitled "In-Finite Form" speaks to the mystery of the endless flow of space, even as it folds back onto itself within the confines of a finite system."
Steve Jensen ©September 2009

2009 Graphic Representations of the Periodic System
Mary E. Saecker writes an article in Chemical Education Digital Library, Periodic Table Presentations and Inspirations: Graphic Representations of the Periodic System, that reviews some periodic table formunations.
The paper contains a link to this pdf file which gives templates and instructions for several print, cut-out & build periodic table formulations:
Supplement to: Periodic Table Presentations and Inspirations by Mary E. Saecker, J. Chem. Educ., 2009, 86, 1151.
Construction Directions A Cut-Out Chart of the Periodic System (Periodic Table Cylinder)

2009 Nasco’s Periodic Table Toss-Up Ball
Toss some fun around the classroom with this 15" inflatable ball challenging students to name 118 elements from the Periodic Table. Two or more players toss the ball to each other, giving the element name for the number and symbol on which their left thumb lands. Answer sheet and instructions included. Grade 6 to adult.

2009 Acrylic on Canvas Painting by Princess Rashid
A series of acrylic on canvas abstract periodic table paintings by Princess Rashid:

2009 Russian MedFlower Periodic Table
Google Russian to English translation:
From Secology.Narod.RU: "Must also give up the basic heuristic principle of Mendeleev and follow him. Forget about the group, we will not argue with what period begins, but just consistently and continuously to build all the elements in a row in ascending order, and fold this series into a spatial helix, in the corporeal form, allowing the convergence of such chemical elements in the vertical..."


hfilipen said...

Physical table of elements. in Russian in English

Blogger said...

Get your personal numerologic report.
Start the most interesting journey of your life and learn your true life purpose.